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Abstract—In this paper, a new upper bound and a new 
lower bound for the spectral radius of a nοnnegative matrix 
are proved by using similarity transformations. These bounds 
depend only on the elements of the nonnegative matrix and its 
row sums and are compared to the well-established upper and 
lower Frobenius’ bounds. The proposed bounds are always 
sharper or equal to the Frobenius’ bounds. The conditions 
under which the new bounds are sharper than the Frobenius' 
ones are determined. Illustrative examples are also provided in 
order to highlight the sharpness of the proposed bounds in 
comparison with the Frobenius’ bounds. An application to 
linear invariant discrete-time nonnegative systems is given and 
the stability of the systems is investigated. The proposed 
bounds are computed with complexity O(n2).  

 
Keywords—Nonnegative matrix, Spectral radius, Row sum, 

Stability, Algorithm, Complexity 

I. INTRODUCTION 
Let ( )nM   be the algebra of ×n n  real matrices. We 

refer to , 1( ) ( )== ∈n
ij i j nA a M   as a nonnegative or a positive 

matrix, when each 0≥ija  or 0>ija , respectively, denoted 
by writing  0≥A  or 0>A . The matrix ( )∈ nA M  is called 

irreducible if and only if 1( ) 0nI A −+ > . We also define the 
spectral radius of A by ( ) max{| |: ( )}A Aρ λ λ σ= ∈ , where 

( )σ A denotes the spectrum of A , that is, the set of 
eigenvalues of A . In case of A is symmetric ( )ρ A  is the 
largest eigenvalue of A .    
For 1≤ ≤i n , the i-th row sum of A , denoted by ( )ir A , is 

 
1

( )
=

= ∑
n

i ij
j

r A a   (1) 

In recent decades, the problem of bounding the largest 
eigenvalue in modulus of a nonnegative matrix has attracted 
the interest of many researchers (see, [1-4, 7-8, 14-20] and 
the references therein), since Perron-Frobenius theory plays 
an important role in the mathematical fields of dynamical 
systems, cryptography, control and graph theory (see, e.g. [1-
2, 4, 7-8, 12-20]). For example, the topological entropy, 
which is one of the main invariants of a topological 
dynamical system telling us how chaotic the system is, can 
often be computed as a logarithm of the spectral radius of a 

certain nonnegative matrix [20]. Furthermore, the analysis of 
discrete-time positive switched systems is based on the 
Perron-Frobenius theory and the graph-theoretic arguments 
(see, [3, 9, 13] and the references therein). The stability 
issues of linear invariant discrete-time nonnegative systems 
are connected to the spectral radius of a matrix of the system 
(see, [3, 5-6, 13, 17] and the references therein).   

The well-known Perron-Frobenius theory has 
investigated the existence of positive eigenvalues of 
nonnegative matrices [11, 16]. In particular, Perron has 
proved that ( )ρ A is a positive and simple eigenvalue of 

0>A  [11, Theorem 8.2.11] and Frobenius has generalized 
Perron’s statement for nonnegative and irreducible matrices 
[11, Theorem 8.4.4] giving lower and upper bounds for the 
spectral radius.  

Algebraic methods for the computation of the bounds of 
the spectral radius of a nonnegative matrix have been 
presented in [1, 4, 8, 14-15, 18] giving applications in the 
spectral radii of the various matrices of a graph or a digraph, 
including the signless Laplacian spectral radius, the distance 
spectral radius and the distance signless Laplacian spectral 
radius, the spectral radius of the reciprocal distance matrix 
(see, [1, 8, 14-15, 18] and the references therein). The 
bounds of the spectral radius, which provided in the 
aforementioned studies, depend on the size, the elements, the 
row sum and various average row sums of the nonnegative 
matrix and their computation is more complicated than the 
computation of the largest eigenvalue of the matrix. 

Moreover, apart from the familiar power method, other 
numerical algorithms have been also constructed and 
implemented for locating the spectrum of matrices as in [7, 
13, 21]. However, the proposed methods are only valid on 
the limited class of diagonalizable matrices or on irreducible 
nonnegative matrices, whose spectral radius has been proved 
to be a simple eigenvalue. The computation of the spectral 
radius is achieved with complexity O(n3). Hence, often 
requires a good estimate of the largest eigenvalue from an 
upper and a lower bound, which are computed with 
complexity O(n2), where n is the size of the nonnegative 
matrix . 

The novelty of this paper concerns (a) the determination 
with simple calculations of new upper and lower bounds for 
the spectral radius of a nοnnegative matrix, which are always 
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sharper or equal to the Frobenius’ bounds and (b) the 
presentation of the complexity required for the proposed 
bounds computation. 
 The paper is organized as follows. In Section II, new 
formulas are presented bounding the spectral radius of any 
nonnegative matrix providing bounds, which depend on the 
elements of the matrix. The conditions under which the new 
bounds are sharper than the Frobenius’ ones are investigated. 
The spectral radius of the special nonnegative matrices is 
formulated and suitable example illustrate the results 
provided in the paper. In Section III, an application in 
stability of a single-input single-output (SISO) linear discrete 
time systems is presented and the stability of the systems is 
investigated. A linear system’s stability check criterion based 
on the proposed upper bound is derived. In Section IV, the 
algorithms for computing the upper and lower bounds of the 
spectral radius of a nonnegative matrix are summarized and 
their complexity is analyzed. Finally, Section V summarizes 
the conclusions. 

II. BOUNDS FOR THE SPECTRAL RADIUS 
The next lemmas demonstrate well-established bounds 

for ( )ρ A , which have been formulated by Frobenius and 
since they are used in our arguments, they are stated here. 

Lemma 1. ([11, Corollary 8.1.20, Theorem 8.1.22]) Let 

, 1( ) ( )== ∈n
ij i j nA a M  , 0≥A  with i-th row sum 

( ), 1,...,=ir A i n . Then, 
                                    

1
max{ } ( )iii n

a Aρ
≤ ≤

≤                               (2) 

      
1 1

( ) min{ ( )} ( ) max{ ( )} ( )λ µρ
≤ ≤ ≤ ≤

≡ ≤ ≤ ≡i ii n i n
r A r A A r A r A         (3) 

Moreover, if A is irreducible, then equality can hold on either 
side of (3) if and only if  1 2( ) ( ) ( )nr A r A r A= = = . 
Definition 2. For a n onnegative matrix 

, 1( ) ( )== ∈n
ij i j nA a M   consider the quantities  

2 4 ( ( ) )
, ( ) (4 )

2( ( ) )
, ( ) (4 )

i i i

i

b b a r A a
if r A a az r A a

i if r A a b

λ λ λλ
λ λλ

λ λλ

λ λλ

− + + −
 >

=  −
 =

 and 
2 4 ( ( ) )

, ( ) (5 )
2( ( ) )

1/ , ( ) (5 )

j j j

j

c c a r A a
if r A a a

w r A a
j if r A a b

µ µ µµ
µ µµ

µ µµ

µ µµ

− + + −
 >= −


=
where ( ), ( )r A r Aλ µ are denoted in (3) and 

( )i i ib a a r Aλ λλ= + − , ( )j j jc a a r Aµ µµ= + − , for 1 ,≤ ≤i j n , 
and i λ≠ , j µ≠ .  
 
Remark 3. Here note that,  if  0≥A , then  

( ) 0,i ii ijr A a a= ⇔ = for all 1 j n≤ ≤ , i j≠ , and 
( )iia Aσ∈ . 

i) Thus, iz  in (4b) are defined for the matrices, where the 
minimum row sum appears to λ − th row and all off-diagonal 
elements of the λ − th row are equal to zero and then 

( )a Aλλ σ∈ .  

ii) Similarly,  jw  in (5b) are defined for the matrices, where 
the maximum row sum appears to µ − th row and all off-
diagonal elements of the µ − th row are equal to zero and 
then  ( )a Aµµ σ∈ .                                                                  □ 

In the following proposition extending the result in 
Remark 3(ii), the spectral radius of a special nonnegative 
matrix is formulated, whose all off-diagonal elements of the 
row with the maximum row sum are equal to zero. 
 
Proposition 4. Let ( )∈ nA M   be a nonnegative matrix 
with ( )r Aµ  in (3) and ( )r A aµ µµ= . Then  

                                       ( )A aµµρ = .                                   (6) 

Proof. Consider ( )r A aµ µµ= ; due to the definition of ( )r Aµ  
in Lemma 1 and for all 1 i n≤ ≤ , we can write 

( ) ( )i iia r A r A aµµ µ= ≥ ≥ , which implies 
1
max{ }.iii n

a aµµ ≤ ≤
=  

Combining the latter equality with the inequality (2) in 
Lemma 1 we derive  

1
max{ } ( )iii n

a a Aµµ ρ
≤ ≤

= ≤ .                                                       (7) 

Moreover, the inequality on the right side in (3) is written 
( ) ( )A r A aµ µµρ ≤ = .                                                            (8) 

Hence, the validity in (6) follows from (7) and (8).               □ 

 
 In the following proposition a lower bound of the above 
quantities iz  in (4) is formulated and upper and lower 
bounds for jw  in (5) are provided. 
 
Proposition 5. Let ( )∈ nA M   be a nonnegative matrix 
with ( ),r Aλ ( )r Aµ  in (3) and for 1 ,≤ ≤i j n  and  i λ≠ ,

,j µ≠  iz , jw  as in (4), (5), respectively.  Let  
 min{ : 1 , with }iz z i n i λ= ≤ ≤ ≠   (9) 
 max{ : 1 , with }jw w j n j µ= ≤ ≤ ≠    (10) 
Then,  
 1iz ≥   and  1z ≥ , (11) 
 0 1jw≤ ≤    and   0 1w≤ ≤  (12) 
Proof. Consider ( )λ λλ>r A a . Due to the definition of ( )r Aλ

in (3) and iz in (4a) with ( )i i ib a a r Aλ λλ= + − , for 1 i n≤ ≤  
and i λ≠ , we can write the following inequalities:  

( )

( )

( )

2 2

22

2

( ) ( )

( )
( )

4 ( ( ) ) 4( ( ) ) ( )

4 ( ( ) ) 4( ( ) )( ( ) )

4 ( ( ) ) 2( ( ) )

4 (

i i i

i
b a a r A

i i

i i

i i

i i i i

i i i

i i

r A r A

a a b r A
a r A a b

a r A a r A a r A a b

b a r A a b r A a r A a b

b a r A a b r A a

b a

λ λλ

λ

λλ λ λ

λ λ λλ

λ λ λλ λ λλ λ λλ

λ λ λλ λ λλ λ λλ

λ λ λλ λ λλ

λ

= + −

≥ ⇔

+ − ≥ ⇔
≥ − + ⇔

− ≥ − − + ⇔

+ − ≥ + − − + ⇔

+ − ≥ + − ⇔

+ ( ) )

2( ( ) ) 2( ( ) )i i

r A a

b r A a b r A a
λ λλ

λ λλ λ λλ

−

≥ + − ≥ + − ⇔
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2

2

4 ( ( ) ) 2( ( ) )

4 ( ( ) )
1 1 (13)

2( ( ) )

i i i

i i i
i

b b a r A a r A a

b b a r A a
z

r A a

λ λ λλ λ λλ

λ λ λλ

λ λλ

− + + − ≥ − ⇔

− + + −
≥ ⇔ ≥

−
Thus, when ( )λ λλ>r A a , 1iz ≥ , for 1 i n≤ ≤ , and i λ≠ . 

Consider ( )r A aλ λλ= ; it is obvious that 1iz i= ≥ , due to 
1 i n≤ ≤ . 
Hence, the validity of (11) follows from the latter 
inequalities of iz  for all 1 i n≤ ≤ , and i λ≠  and the 
definition of z  in (9).     
Consider ( )r A aµ µµ>  and the definition of jw  in (5a) with 

( )j j jc a a r Aµ µµ= + − , for 1 j n≤ ≤ , j µ≠ . Since 

 
2

2

4 ( ( ) )

4 ( ( ) ) 0,

j j j j

j j j

c a r A a c c

c c a r A a

µ µ µµ

µ µ µµ

+ − ≥ ≥ ⇔

− + + − ≥
 

and ( ) 0r A aµ µµ− > , the quantity jw  in (5a) yields 
0jw ≥ , for 1≤ ≤i n , .i µ≠                                               (14) 

Moreover, due to the definition of ( )r Aµ  in Lemma 1 and 
the nonnegativity of the quantity 

( ) ( )
2( ( ) ) ( ) 2 ( ) 2

( ) ( ) ( ) 0 (15)
j j j

j j

c r A a a a r A r A a

r A r A r A a a
µ µµ µ µµ µ µµ

µ µ µµ µ

+ − = + − + −

= − + − + >

we can write the following: 

( )

( )

( )

2 2 2

2 2

( ) ( )

( )

( ) 0

4( ( ) )( ( ) ) 4 ( ( ) )

4( ( ) ) 4 ( ( ) ) 4 ( ( ) )

2( ( ) ) 4 ( ( )

j j jc a a r A

j

j j

r A a

j j

j j

j j j j

j j j

r A r A
r A a a c

r A a c a
r A a r A a c a r A a

c r A a c r A a c a r A a

c r A a c a r A

µ µµ

µ µµ

µ

µ µ µµ

µ µµ µ

µ µµ µ µµ µ µ µµ

µ µµ µ µµ µ µ µµ

µ µµ µ µ

= + −

>

≥ ⇔

≥ + − ⇔

− + ≥ ≥ ⇔

− − + ≥ − ⇔

+ − + − ≥ + − ⇔

+ − ≥ +

( )2 2

(15)
2

2

) 0

2( ( ) ) 4 ( ( ) )

2( ( ) ) 4 ( ( ) )

2( ( ) ) 4 ( ( ) )

j j j

j j j

j j j

a

c r A a c a r A a

c r A a c a r A a

c r A a c a r A a

µµ

µ µµ µ µ µµ

µ µµ µ µ µµ

µ µµ µ µ µµ

− > ⇔

+ − ≥ + − ⇔

+ − ≥ + − ⇔

+ − ≥ + − ⇔

 
2

2

4 ( ( ) ) 2( ( ) )

4 ( ( ) )
1 1 (16)

2( ( ) )

j j j

j j j
j

c c a r A a r A a

c c a r A a
w

r A a

µ µ µµ µ µµ

µ µ µµ

µ µµ

− + + − ≤ − ⇔

− + + −
≤ ⇔ ≤

−

Consider the other case, ( )r A aµ µµ= ;  due to the definition of 

1/jw j=  with 1 j n≤ ≤ in (5b), it is obvious that 

0 1jw< ≤ . 
Hence, the validity of (12) follows from (14), (16) and the 
latter inequalities 0 1jw< ≤ , for all 1 j n≤ ≤ , ,j µ≠  as 
well as the definition of w  in (10).                                        □ 
 
Remark 6. Notice that :  
(i) For 1 j n≤ ≤ , j µ≠ , the following equivalence is 
derived by (5α): 

0 0 and 0j j jw a cµ= ⇔ = ≥  
0 0 and ( )j j jw a r A aµ µµ= ⇔ = ≤                               

Combining the definition in (10) and the latter equivalence 
give the following  

0 (17)
0 and ( ) , for all 1,..., ,j j

w
a r A a j n jµ µµ µ

= ⇔
= ≤ = ≠

(ii) The equality 1iz =  holds in (11) if and only if there exist 
at least two rows with the minimum row sum, which is 
proved by the equivalence in (13). 
In this case, 1z =  due to the definition in (9). 
(iii) The equality 1jw =  holds in (12) if and only if there 
exist at least two rows with the maximum row sum, which is 
proved by the equivalence in (16).   
In this case, 1w =  due to the definition in (10).                    □ 

 

In the following theorem, a new lower bound of the 
spectral radius of 0≥A is formulated, which can be 
compared by the Frobenius’ lower bound in (3). 
 

Theorem 7. Let ( )nA M∈  be a nonnegative matrix with 
( )r Aλ  in (3) and z in (9). Then,  

                       ( ) ( ( ) ) .A z r A a aλ λλ λλρ ≥ − +                        (18) 

Proof. For 1 i n≤ ≤  and i λ≠ , consider the quantities iz  in 
(4a)-(4b) and the minimum of iz  denote tz , i.e., 

min{ : 1 , with }t iz z z i n i λ≡ = ≤ ≤ ≠ .  
Consider the n n×  nonsingular matrix 

(1, ,1,1/ ,1, ,1)zU diag z=   , where its λ diagonal element 
is equal to 1/ z  and  let  

1
11 1

1
1

1

n

z z z n

n
n nn

a
a a

z

B U AU za a za

a
a a

z

λ

λ λλ λ

λ

−

 
 
 
 
 = =  
 
 
  
 

 

  

 

  

 

                  (19) 

Here, notice that when all the formulas of iz  are given by 
(4b), then 1tz z= =  due to (9) and zB A≡  in (19); in this 
case the inequality (18) follows immediately from the left 
side of (3) in Lemma 1.  
Now, the λ-row sum of zB  in (19) is given by 

1
( ) ( ( ) )

n

z i
i
i

r B za a z r A a aλ λ λλ λ λλ λλ

λ
=
≠

= + = − +∑                     (20) 

and the i-row sum of zB  for 1 i n≤ ≤  with i λ≠  

( ) ( ) i
i z i i

a
r B r A a

z
λ

λ= − + .                                                  (21) 

We claim that for i t=  holds 
( ) ( )z t zr B r Bλ =                                                                  (22) 

and for 1 i n≤ ≤  and ,i tλ≠  holds 
( ) ( )i z zr B r Bλ≥ .                                                                (23) 
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For i t= , since the formula of tz  are given by (4a),
2 4 ( ( ) )

,
2( ( ) )

t t t
t

b b a r A a
z z

r A a
λ λ λλ

λ λλ

− + + −
≡ =

−
 with 

( )t t tb a a r Aλ λλ= + − ; substituting z  into (20) arises 
2 4 ( ( ) )

( ) .
2

t t t
z

b b a r A a
r B aλ λ λλ
λ λλ

− + + −
= +                  (24) 

Moreover, substituting the quantity z  into (21) for i t= and 
using the equality ( )t t tr A a a bλ λλ− = −  arises 

2 4 ( ( ) )
( ) . (25)

2
t t t

t z

b b a r A a
r B aλ λ λλ

λλ

− + + −
= +

Obviously, the first claim in (22) is proved by (24), (25). 
Furthermore, due to the choice of z  in (9) it is obvious that 

iz z≤ , for 1 i n≤ ≤  and ,i tλ≠ . Thus, using (4a), (20), (21) 
and the latter inequality iz z≤ , we can write  

( ) ( ) ( ) ( ( ) )

( ) ( ( ) )

i
i z z i i

i
i i i

a
r B r B r A a z r A a a

z
a

r A a a z r A a
z

λ
λ λ λ λλ λλ

λ
λ λλ λ λλ

− = − + − − −

≥ − − + − −
 

( )

2

2

( ( ) )

4 ( ( ) )
( ( ) )

2( ( ) )
2 ( )

0,
4 ( ( ) )

i
i i

i

i i i
i

i

i i i

a
b z r A a

z

b b a r A a
b r A a

r A a
a r A a

b b a r A a

λ
λ λλ

λ λ λλ
λ λλ

λ λλ

λ λ λλ

λ λ λλ

≥ − − − +

− + + −
= − − −

−

−
+ =
− + + −

 

which proves the second claim in (23).  
Now, combining (22), (23) and (20) arises  

( )min{ ( ) : 1 } ( ) ( ) . (26)i z zr B i n r B z r A a aλ λ λλ λλ≤ ≤ = = − +  
Moreover, the similarity of the matrices A and zB  by (19), 
the inequality (3) in Lemma 1 and (26) arise us write 
          ( )

1
( ) ( ) min{ ( )} ( ) ,z i zi n
A B r B z r A a aλ λλ λλρ ρ

≤ ≤
= ≥ = − +  

which completes the proof.                                                   □ 
 
                                     
Remark 8.  

Since 1z ≥  by (11), the proposed lower bound of Theorem 
7 compared by the Frobenius’ lower bound in (3) 
( )( ) ( ) ( ),z r A a a r A a a r Aλ λλ λλ λ λλ λλ λ− + ≥ − + =  

thus the inequality in (18) is written  
( )( ) ( ) ( ).r A z r A a a Aλ λ λλ λλ ρ≤ − + ≤                                 (27) 

i) Since the inequality ( )( ) ( )r A z r A a aλ λ λλ λλ< − +  yields  

( )( ) (1 ) 0r A a zλ λλ− − <                                                    
and 1z ≥ , the latter inequality follows that the new lower 
bound of Theorem 7 is sharper than the Frobenius’ lower 
bound in (3) if and only if  
                       ( )r A aλ λλ>  and 1z > .                              (28) 
ii) It is obvious from (i) that the new lower bound of the 
spectral radius of 0A ≥  is equal to the Frobenius’ one,  
when  holds ( )r A aλ λλ= or 1z = .  
According to Remarks 3(i) and 6(ii) the latter condition 
implies that the new lower bound is equal to the Frobenius’ 

bound either all off-diagonal elements of the λ -th row are 
equal to zero or there are at least two rows with the minimal 
row sum.                                                                                 □ 

 In the following theorem, a new upper bound of the 
spectral radius is formulated, which can be compared by the 
Frobenius' upper bound in (3). 

 
Theorem 9. Let ( )∈ nA M  be a nonnegative matrix with

( )r Aµ  in (3). Let  the quantity w  in (10) with 0w > . Then,  

 ( )( ) ( ) .A w r A a aµ µµ µµρ ≤ − +  (29) 

Proof. For 1 j n≤ ≤  and j µ≠ , consider the quantities jw  

in (5a)-(5b) and the maximum of jw  denote kw , i.e., 

max{ : 1 , with }k jw w w j n j µ≡ = ≤ ≤ ≠ .  
Consider the n n×  nonsingular matrix 

(1, ,1,1/ ,1, ,1)wV diag w=   , where its μ diagonal element 
is equal to 1/ w  and  let   

1
11 1

1
1

1

n

w w w n

n
n nn

a
a a

w

C V AV wa a wa

a
a a

w

µ

µ µµ µ

µ

−

 
 
 
 
 = =  
 
 
 
 
 

 

  

 

  

 

                 (30)                                                

Here, notice that when all the formulas of jw  are given by 
(5b), then 1kw w= =  due to (10) and wC A≡  in (30); in 
this case the inequality (29) follows immediately from the 
right side of (3) in Lemma 1.  
Now, the μ-row sum of wC  in (30) is given by 

1
( ) ( ( ) )

n

w j
j
j

r C wa a w r A a aµ µ µµ µ µµ µµ

µ
=
≠

= + = − +∑                 (31) 

and the j-row sum of wC  for j µ≠  is given by  

( ) ( ) j
j w j j

a
r C r A a

w
µ

µ= − + .                                              (32) 

We claim that for j k=  holds 
( ) ( )w k wr C r Cµ =                                                                (33) 

and for 1 j n≤ ≤  and ,j kµ≠  holds 
( ) ( )w j wr C r Cµ ≥ .                                                              (34) 

For j k= , since the formula of kw  is given by (5a), 
2 4 ( ( ) )

,
2( ( ) )

k k k
k

c c a r A a
w w

r A a
µ µ µµ

µ µµ

− + + −
≡ =

−
 with 

( )k k kc a a r Aµ µµ= + − , substituting w  into (31) arises 
2 4 ( ( ) )

( ) .
2

k k k
w

c c a r A a
r C aµ µ µµ
µ µµ

− + + −
= +                 (35) 

Moreover, substituting the quantity w  into (32) for j k=
and using the equality ( )k k kr A a a cµ µµ− = −  arises 

2 4 ( ( ) )
( ) .

2
k k k

k w

c c a r A a
r C aµ µ µµ

µµ

− + + −
= +                 (36) 
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Obviously, from (35), (36) the first claim in (33) is proved. 
Furthermore, due to the choice of w  in (10) it is obvious 
that jw w≥ , for 1 j n≤ ≤  and ,j kµ≠ . Thus, using (5a), 
(31), (32) and the latter inequality jw w≥ , we can write  

( )

2

2

( ) ( ) ( ) ( ( ) )

( ) ( ( ) )

( ( ) )

4 ( ( ) )
( ( ) )

2( ( ) )

2 ( )
0,

4 ( ( ) )

j
j w w j j

j
j j j

j

j
j j

j

j j j
j

j

j j j

a
r C r C r A a w r A a a

w
a

r A a a w r A a
w

a
c w r A a

w

c c a r A a
c r A a

r A a

a r A a

c c a r A a

µ
µ µ µ µµ µµ

µ
µ µµ µ µµ

µ
µ µµ

µ µ µµ
µ µµ

µ µµ

µ µ µµ

µ µ µµ

− = − + − − −

≤ − − + − −

= − − − +

− + + −
= − − −

−

−
+ =
− + + −

 

which proves the second claim in (34).  
Now, combining (33), (34) and (31) arises  

( )
1
max{ ( )} ( ) ( ) .j w wj n

r C r C w r A a aµ µ µµ µµ≤ ≤
= = − +                (37) 

Moreover, the similarity of the matrices A and wC  by (30), 
the inequality (3) in Lemma 1 and (37) arise us write 

( )
1

( ) ( ) max{ ( )} ( ) ,w j wj n
A C r C w r A a aµ µµ µµρ ρ

≤ ≤
= ≤ = − +  

which completes the proof.                                                   □ 
 
Remark 10.  

Since 0 1w< ≤  by (12), the proposed upper bound of 
Theorem 9 compared by the Frobenius’ upper bound in (3) 

( ( ) ) ( ) ( ),w r A a a r A a a r Aµ µµ µµ µ µµ µµ µ− + ≤ − + =  
thus the inequality in (29) is written  

( ) ( ( ) ) ( ).A w r A a a r Aµ µµ µµ µρ ≤ − + ≤                                (38) 

i) Since the inequality ( )( ) ( )w r A a a r Aµ µµ µµ µ− + <  yields  

( )( ) ( 1) 0r A a wµ µµ− − <                                                    
and 0 1w< ≤  due to (12) and the assumption of Theorem 9, 
the latter inequality follows that the new upper bound of 
Theorem 9 is sharper than the Frobenius’ upper bound in 
(3) if and only if  
                       ( )r A aµ µµ>  and 0 1w< < .                        (39) 
ii) It is obvious from (i) that the new upper bound of the 
spectral radius of 0A ≥  is equal to the Frobenius’ one,  
when  holds ( )r A aµ µµ=  or 1w = .  
According to Remark 3(iii) the case ( )r A aµ µµ=  implies that 
the new upper bound is equal to the Frobenius’ bound and 
due to Proposition 4 the spectral radius of A is equal to aµµ . 
According to Remark 6(iii) the case 1w =  implies that the 
new upper bound is equal to the Frobenius’ bound.   
iii) The substitution 1/w u=  in the formula of the new 
upper bound of Theorem 9 gives the same upper bound of 
the spectral radius, which has been derived in [4, Theorem 
3].                    □ 

Example 11. Consider the matrix 

9 8 1 6
0 7 3 2
1 0 4 0
0 5 1 1

A

 
 
 =
 
 
 

. 

The spectrum of A is σ(A) =  { 0.4340 5.2412 1.74,  i,18− ±  
10.9517}, which means that ( ) 10.8213Aρ = . Clearly, its 
row sums are 1( ) 24,r A =  2 ( ) 12,r A =  3 ( ) 5,r A = 4 ( ) 7,r A =  
whereby ( ) 5r Aλ = , ( ) 24r Aµ = , and 3λ = , 1µ = .  
Since 3 33( )A ar > , the quantities iz ,  i = 1, 2,4 are given by 

(4α) and these are equal to 1
19 365

2
z +
= , 2

5 37
2

z +
= , 

and 4
2 8 1 2

2
z +
= = + .  

By (9), 4 1 2 4min{ , , } 1 2z z z z z≡ = = + . 
Hence, the inequality in (18) of Theorem 7 gives

 1 2)(5 4) 4 5( ) ( 6.4142 2.Aρ + − + = + =≥   

Since 3 33 ( )r aA >  and 1 2 1z = + > , it is  obvious that the 
condition in (28) is verified, thus the proposed lower bound 
of ( )Aρ  is sharper than the Frobenius’ bound in (3). Here, 
notice that the largest diagonal element of Α is 11 9a = , thus 
the Frobenius’ bound in (2) is sharper than the proposed 
lower bound; the explanation is given in Proposition 17(ii) 
and Remark 18.   
Since 1 11( )r A a> , the quantities jw ,  2,3, 4j =  are given by 

(5a) and these are equal to 2
1
5

w = , 3
5 85

30
w − +

= , and 

4 0w = , since 4 41 11 4 ( ) 2 0c a a r A= + − = >  and 41 0a = . By 
(10),  2 3 4max{ , , } 1/ 5w w w w= = .  
Hence, the inequality in (29) of Theorem 9 gives 

1( ) (24 9) 9 12
5

ρ ≤ − + =A .  

Since 1 11( )r A a>  and 1/ 5 1w = < , it is  obvious that the 
condition in (39) is verified, thus the proposed upper bound 
of ( )Aρ  is sharper than the Frobenius’ bound in (3).           □ 

In the following proposition, the exact computation of 
the spectral radius of a s pecial nonnegative matrix is 
achieved, using the new upper and lower bounds in 
Theorems 8,9. The spectral radius depends on the maximum 
and minimum row sum of A and the elements of the first 
column of A.  
  
Proposition 12.  Let ( )nA M∈  be a nonnegative with 

1 0ia a= > , for 2 i n≤ ≤ , and row sums ( )ir A such that 

1 2( ) ( ) ( )nr A r A r A r> = = ≡ , and 1 11( )r A a> . Then,  
2

11 11 1 11( ) 4 ( ( ) )
( ) .

2
r a a a a r a r A a

Aρ
− + + + − + −

=          (40) 

Proof.  Since 1 0ia a= > , for 2 i n≤ ≤ , and 

1 2( ) ( ) ( ) 0nr A r A r A r> = = = > , 
it is obvious that the quantities iw  are given by (5a) for 

2 3 11nc c c c a a r≡ = = = = + − , and due to (10) arises  
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2
1 11

2
1 11

2
11 11 1 11

1 11

4 ( ( ) )
2( ( ) )

( ) 4 ( ( ) )
. (41)

2( ( ) )

n

c c a r A a
w w w

r A a

r a a a a r a r A a
r A a

− + + −
≡ = = =

−

− − + + − + −
=

−



Notice that, 0w >  because of the assumption 1 0ia a= > , 
for 2 i n≤ ≤ , and (17). 

Consider the n n×  nonsingular matrix 1( ,1, ,1)wV diag
w

= 

and the corresponding matrix wC  in (30), which is given by  

11 12 1

22 2
1

2

n

n

w w w

n nn

a wa wa
a a a
wC V AV

a a a
w

−

 
 
 
 = =  
 
 
 
 





  



                         (42) 

Substituting the quantity w  from (41) into the 1-row sum of 
wC in (42) arises 

1 1 11 11

2
11 11 1 11

( ) ( ( ) )

( ) 4 ( ( ) )
. (43)

2

wr C w r A a a

r a a a a r a r A a

= − +

− + + + − + −
=

Moreover, the substitution of the quantity w  from (41) in the 
formula of the i-row sum of wC gives 

2

1 11

2
11 11 1 11

2
11 11 1 11

( ) ( )

2 ( ( ) )

( ) 4 ( ( ) )

( ) 4 ( ( ) )
. (44)

2

w n w
ar C r C r a
w

a r A ar a
r a a a a r a r A a

r a a a a r a r A a

= = = − +

−
= − +

− − + + − + −

− + + + − + −
=



 

Obviously, since the second parts of the equalities in (43), 
(44) are identified, for the row sums of wC  holds  

1 2( ) ( ) ( )w w n wr C r C r C= = = .                                          (45) 
Combining (45) with (3) of Lemma 1 we derive  

21 1

2(42)
11 11 1 11

( ) min{ ( )} max{ ( )} ( )

( ) 4 ( ( ) )
,

2

w i w i w wi n i n
C r C r C r C

r a a a a r a r A a

ρ
≤ ≤ ≤ ≤

= ≡ =

− + + + − + −
=

 

which completes the proof of (40) due to the similarity of the 
matrices A and wC  in (42).                                                     □ 
 

In the following proposition, the spectral radius of the 
special nonnegative matrix, whose elements are given under 
the restrictions in Remark 6(i) be indicated, is formulated. 
                                      
Proposition 13. Let ( )∈ nA M   be a n onnegative matrix 
with ( )r Aµ  in (3) and 0w = , then  

                                            ( )A aµµρ = .                            (46) 
Proof. Consider 0w = ; due to the equivalence in (17) the 
nonnegative matrix A is formulated  

11 1

1

1

0

0

n

n

n nn

a a

A a a a

a a

µ µµ µ

 
 
 
 =
 
 
 
 

 

  

 

  

 

 

with ( )jr A aµµ≤ , for all 1, 2, , 1, 1, ,j nµ µ= − + 
 , and 

its principal submatrix  
11 1, 1 1, 1 1

1,1 1, 1 1, 1 1,

1,1 1, 1 1, 1 1,

1 , 1 , 1

n

n

n

n n n nn

a a a a

a a a a
A

a a a a

a a a a

µ µ

µ µ µ µ µ µ

µ µ µ µ µ µ

µ µ

− +

− − − − + −

+ + − + + +

− +

 
 
 
 

=  
 
 
  
 

 

   

 



 

   

 

. 

The formula of A and (17) yield 

1 , 1 ,
( ) ( ) max{ ( )} max{ ( )}j j j jj n j n

j j

r A r A a r A r A aµµ µµ
µ µ

≤ ≤ ≤ ≤
≠ ≠

= ≤ ⇒ = ≤   , 

and by (3)  
                               

1 ,
( ) max{ ( )}jj n

j

A r A aµµ
µ

ρ
≤ ≤
≠

≤ ≤   .                 (47) 

Obviously, from the formula of A  arise ( )a Aµµ σ∈  and 

                                  ( ) { } ( )A a Aµµσ σ= ∪  .                      (48)                  
Hence, the validity in (46) follows from the definition of the 
spectral radius of A in (1), (47) and (48).                               □ 
 

 In the following proposition under the restriction 
concerning the minimum row sums of ,A A  a new lower 
bound of 0A ≥  is formulated, which is derived by the lower 
bound of the spectral radius of A  and improves the 
Frobenius’ one.  

 
Proposition 14. Let ( )∈ nA M   be a n onnegative matrix 

with ( )r Aλ  in (3).  L et 1
, 1 1( ) ( )n

ij i j nA a M−
= −= ∈

   be the 
principal submatrix obtained by deleting λ-row and λ-
column of A. If ( ) ( )r A r Aλλ >



 , then 

         ( )( ) ( ) ( )r A z r A a a Aλ λ λλ λλ ρ< − + ≤
  



  ,            (49) 

where the associated quantities ( ),r A aλ λλ 



  and z  are 

defined by (3) and (9) for A . 
Proof. The relation between the spectral radii of principal 
submatrix A  of A and the nonnegative matrix A is given by 
                                       ( ) ( )A Aρ ρ≤ ,                             (50) 
[11, Corollary, 8.1.20]. Applying Theorem 7 for the 
principal submatrix A  of A , the inequality (27) yields 
                    ( )( ) ( ) ( )r A z r A a a Aλ λ λλ λλ ρ≤ − + ≤

   

  

  .          

Combining (50) with assumption ( ) ( )r A r Aλλ >


 the latter 
inequality implies that 

( )( ) ( ) ( ) ( ) ( )r A r A z r A a a A Aλ λ λ λλ λλ ρ ρ< ≤ − + ≤ ≤
   

  

  , 
which completes the proof.                                                    □ 
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Remark 15. Remind that the new lower bound of the 
spectral radius of A in (18) is sharper than the Frobenius’ one 
under the conditions ( )r A aλ λλ> and 1z >  (see, Remark 
8(i)); here we are going to extend the above result in the 
cases ( )λ λλ=r A a  or 1z = using the result in Proposition 14 

under the restriction ( ) ( )r A r Aλλ >


  for the principal 

submatrix A  of 0A ≥ . Obviously, the proposed lower 
bound ( )( )z r A a aλ λλ λλ− +

  



   in (49) of the spectral radius of A 
is sharper than the Frobenius’ one; the sharpness of the 
bound does not depend on the conditions in (28), it depends 
only on the condition concerning the minimum row sums of 
A and A.                                                                                 □ 

Example 16. Consider the matrix 

7 9 5 4
0 2 0 0
1 3 2 4
0 8 1 5

 
 
 =
 
 
 

A . 

The spectrum of A is σ(A) =  {0.4831, 2, 5.2730, 8.2439}, 
which means that ( ) 8.2439ρ =A . Clearly, its row sums are 

1( ) 25r A = , 2 ( ) 2r A = , 3 ( ) 10=r A , 4 ( ) 14=r A ,  whereby 
( ) 2r Aλ = , ( ) 25r Aµ = , and 2λ = , 1µ = . 

Since 2 22( 2) = =r aA , the new lower bound of the spectral 
radius of A , which is established in Theorem 7, is equal to 
the Frobenius’ one (see, Remark 8(ii)). According to 
Remark 15, consider the principal submatrix 

                              
7 5 4
1 2 4
0 1 5

 
 =  
 
 

A , 

which is obtained by deleting the second row and column of 
A. Obviously, 1( ) ( ) 16µ ≡ =r A r A



  , 2 ( ) 7=r A  and 

3( ) ( ) 6λ ≡ =r A r A


  . Since 33 3( 5)r A a> =

 , the quantities  

1 2, ,z z z    of A are computed by (4a), (9), these are equal to 

1
7 65

2
z +
= , 2 1 5z = − +

and 1 2min{ , } 1 5z z z≡ = − +  
.  

Since ( ) ( )r A r Aλλ >


  the assumption of Proposition 14 i s 
satisfied, hence the new lower bound of ( )Aρ  is formulated 
by (49) and equal to 
( )( ) ( 1 5)(6 5) 5 6.23 1.4 5 6z r A a aλ λλ λλ− + = − + − + = + =
  



 

For the upper bound of A, since 1 11( )r A a> , the quantities 

jw ,  2,3, 4=j  are given by (5a) and these are equal to 

2 0=w , 3
1 19

18
w +

= , 4
7

18
w = .  

By (10),  2 3 4max{ , , } 7 /18w w w w= = . Hence, Theorem 9  
can be applied and the inequality in (29) gives 

7( ) (25 7) 7 14
18

ρ ≤ − + =A .  

Here, notice that the new bounds give: 6.2361 ( ) 14ρ≤ ≤A  
and the Frobenius’ bounds: 2 ( ) 25ρ≤ ≤A . 
Obviously, the new lower bound of the spectral radius of ,A
which is computed through the new lower bound of the 

principal submatrix A  and formulated in (49), is sharper 
than the Frobenius’ lower bound 2( ) ( ) 2λ ≡ =r A r A .           □ 
 
Finally, in the following we are going to show how we are 
able to involve both the two Frobenius’ lower bounds of 
Lemma 1 in the proposer lower bound determination of 
Theorem 7.  
Remind that for a nonnegative matrix the determined 
Frobenius’ lower bounds are: 

1
max{ } ( )iii n

a a Aρ
≤ ≤

≡ ≤  in (2) 

and 
1

( ) min{ ( )} ( )ii n
r A r A Aλ ρ

≤ ≤
≡ ≤  in (3).      

It is obvious that, if ( )a r Aλ≤  with ( )r A aλ λλ>  and 1z > , 
then Theorem 7 determines a new lower bound, which is 
sharper than both the Frobenius' lower bounds due to 
Remark 8(i); in this case the new lower bound is formulated 
by (18) and denoted  
                                 ( ) ( ( ) )lb z z r A a aλ λλ λλ= − +                (51) 
with min{ : 1 , with }iz z i n i λ= ≤ ≤ ≠  in (9). 
Furthermore, if  ( )r A aλ < , then the new lower bound in 
(51) can be compared with both the Frobenius’ lower 
bounds of Lemma 1 and the conditions defined to determine 
the sharper one. 
The idea is to consider the lower bound a double-value 
function of , az z , where z  is denoted in (9) and az is 
defined  

                                 
( )a
a a

z
r A a

λλ

λ λλ

−
=

−
.                             (52)  

The corrected lower bound of ( )Aρ  is denoted 
( ) ( ( ) ) .a alb z z r A a aλ λλ λλ= − +                                         

Since the substitution of az  into the corrected lower bound 
of ( )Aρ  yields ( )alb z a= , it is obvious that  we can write 

( ) ( )alb z a Aρ= ≤  due to Lemma 1; thus, ( )alb z consists of 
a lower bound of ( )Aρ .                                                                  
Now, the proposed lower bound in Theorem 7 c an be 
compared with the associated Frobenius’ lower bound of 
Lemma 1, as it is proved in the following proposition. 
 
Proposition 17.  Let ( )∈ nA M   be a nonnegative matrix 
and let

1
max{ }iii n

a a
≤ ≤

≡ , ( )r Aλ ,  z, az , and ( )lb z be defined by 

(2), (3), (9),  (52) and (51), respectively.   
i) If ( )a r Aλ≤  with ( )r A aλ λλ>  and 1z ≥ , then 

( ) ( ) ( )a r A lb z Aλ ρ≤ ≤ ≤ .                                
ii) If ( )r A aλ <  with ( )r A aλ λλ>  and az z< , then 

( ) ( ) ( )r A lb z a Aλ ρ≤ < ≤ .                         
iii) If ( )r A aλ <  with ( )r A aλ λλ>  and az z≥ , then 

( ) ( ) ( )r A a lb z Aλ ρ< ≤ ≤ . 
Proof. i) The order of the lower bound of the spectral radius 
of A follows immediately from Theorem 7 and the 
assumptions.  
 ii) Since ( ) 0r A aλ λλ− > , the inequality az z<  yields  

( ( ) ) ( ( ) )az r A a a z r A a aλ λλ λλ λ λλ λλ− + < − + . 
By substituting ( )lb z , az  from (51) and (52), respectively, 
into the above inequality,  we have ( )lb z a< . 
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The order of the bounds of the spectral radius of A follows 
from the left inequality in (27) and (2). 
iii) Since ( ) 0r A aλ λλ− > , the inequality az z≥  yields  

( ( ) ) ( ( ) )az r A a a z r A a aλ λλ λλ λ λλ λλ− + ≥ − + . 
Following analogous statements as the proof in (ii) arises 

( )lb z a≥ . 
The order of the bounds of the spectral radius of A follows 
from the right inequality in (27) and the assumption 

( )r A aλ < .                                                                             □ 
 
Remark 18. According to Proposition 17, the proposed 
lower bound ( )lb z in (51) of the spectral radius of A is 
sharper than the both Frobenius’ lower bounds of Lemma 1, 
when the assumptions in (i) or (iii) of Proposition 17 a re  
satisfied. Notice that the first assumption depends on the 
order of the minimum row sum ( )r Aλ  and the maximum 
diagonal element a  of A and the second depends on the 
quantity z .                                                                            □ 
  
Example 19. Consider the nonnegative matrices

1 3 0 2
2 4 5 3
0 4 1 5
4 1 5 2

A

 
 
 =
 
 
 

 ,  

9 7 5 4
2 5 1 7
1 3 2 4
0 1 1 2

B

 
 
 =
 
 
 

  and

9 6 5 0
2 1 3 2
4 7 8 3
1 5 0 6

C

 
 
 =
 
 
 

. 

• The spectrum of the nonnegative matrix A  is 
( )Aσ = { 5.0566, 1.0376 1.0754i, 10.9814− ± }, which means 

that ( ) 10.9814.Aρ =   

Clearly, its row sums are 1( ) ( ) 6,r A r Aλ ≡ =  

2( ) ( ) 14,r A r Aµ ≡ = 3 ( ) 10,r A =  4 ( ) 12,r A =  and 

221 4
max{ } 4iii

a a a
≤ ≤

≡ = = . 

Since 1( )a r A<  and 1 11( )Ar a> , the assumptions of 
Proposition 17(i) are satisfied, thus, the lower bounds of 

( )Aρ  are ordered as  14 ( ) ( ) ( )r A lb z Aρ< ≤ ≤  verifying the 
inequalities therein, where ( )lb z  is formulated by (51). 
The quantities iz , 2,3, 4i =  are given by (4α) and these are 

equal to 2
11 161

10
z +
= ,  3

9
5

z = , and 4
7 129

10
z +
= . Since 

3 2 3 4min{ , , } 9 / 5,z z z z z≡ = =  the lower bound in (51) is 

equal to 1 11 11
9( ) ( ( ) )  ( 1) 1 0
5

6 1lb z z r A a a= − + − + == , which 

is sharper than the both Frobenius’ lower bounds in Lemma 
1  due to Remark 18. 
Hence, 10 ( )Aρ≤ . 
For the upper bound of A , since 4 44( )r A a> , the quantities 
 jw ,  1, 2,3j =  are given by (5a) and these are equal to 

 1
1 121 1

20 2
w − +

= = , 3
2 164 ,

20
w +

=  4
7 89

20
w +

= .  

By (10),  4 1 3 4
7 89max{ , , } 0.8217.

20
w w w w w +
≡ = = =   

Hence, Theorem 9 can be applied and the inequality in (29) 

gives 7 89( ) (14 4) 4 12.2170
20

Aρ +
≤ − + = .  

Thus, the spectral radius is lower and upper bounded: 
10 ( ) 12.217Aρ≤ ≤         
Here, notice that the both bounds (lower and upper) of 

( )Aρ are given by the proposed bounds in Theorem 7 and 9, 
respectively.     
• The spectrum of B  is ( )Bσ =  { 0.3988 0.4882i± ,  

4.5890, 12.6135}, which means that ( ) 12.6135.Bρ =  
Clearly, its row sums are 1( ) ( ) 25r B r Bµ ≡ = , 2 ( ) 15r B = ,

3 ( ) 10r B = , 4( ) ( ) 4r B r Bλ ≡ = , and 111 4
max{ } 9iii

a b b
≤ ≤

≡ = = . 

Since 4 44( )Br b> , for 1, 2,3i = the quantities iz  are given 

by (4a) and these are equal to 1
19 393

4
z +
= , 

2
6 92

4
z +
= , and 3

4 48 1 3
4

z +
= = + .  

By (9), 3 1 2 3min{ , , } 1 3 2.7321z z z z z≡ = = + = . 
Moreover, the quantities az  are computed by (52) and equal 

to : 44

4 44

9 2 3.5
( ) 4 2a
a bz

r B b
− −

= = =
− −

. In addition, by (51), 

4 44 44( ) ( ( ) ) ( 1 3)(4 7.4) 642 2 1lb z z r B b b + − == − ++ = . 
Since 4 ( )r B a< with 4 44( )Br b>  and az z< , the 
assumptions of Proposition 17(ii) are satisfied, thus, the 
lower bounds of ( )Bρ  are ordered as   

4 ( ) ( ) ( )r B lb z a Bρ≤ < ≤ , verifying the inequalities therein. 
Hence, it is obvious that the Frobenius’ lower bound in (2) 
is sharper than the Frobenius’ lower bound in (3) and the 
proposed lower bound of Theorem 7. 
For the upper bound of B , since 1 11( )r B b> , the quantities 

jw ,  2,3, 4=j  are given by (5a) and these are equal to 

2
4 144 1

32 2
w +

= = , 3
64 1

32 4
= =w , 4 0w = .  

By (10),  2 2 3 4max{ , , } 1/ 2w w w w w≡ = = . Hence, Theorem 
9 can be applied and the inequality in (29) gives 

1( ) (25 9) 9 17
2

ρ ≤ − + =B .  

Thus, the spectral radius is lower and upper bounded: 
9 ( ) 17ρ≤ ≤B         
Here, notice that the lower bound of ( )Bρ is given by 
Frobenius’ one in (2) and the upper bound of ( )Bρ  by 
Theorem 9. 
• The spectrum of C  is ( )Cσ = { 2.0292, 4.6153,5.5443,−   
15.8695 }, which means that ( ) 15.8695Cρ = .  
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Clearly, its row sums are 1( ) 20,r C =  2( ) ( ) 8,r C r Cλ ≡ =  

3( ) ( ) 22r C r Cµ ≡ = , 4 ( ) 12r C =  and 111 4
max{ } 9iii

a c c
≤ ≤

≡ = = . 

Since 2 22( ) 1r cC > = , for 1,3, 4i = the quantities iz  are 

given by (4a) and these are equal to 1
13 337

14
z +
= , 

3
14 392 7 98

14 7
z + +
= = , and 4

6 176 3 44
14 7

z + +
= = .  

By (9), 4 1 3 4
3 44min{ , , } 1.3762

7
z z z z z +
≡ = = = . 

Moreover, the quantities az  are computed by (52) and equal 
to : 

22

2 22

9 1 8 1.1429
( ) 8 1 7a
a cz

r C c
− −

= = = =
− −

. In addition, by (51), 

2 22 22
3 44( ) ( ( ) ) (8 1) 1 10.6332

7
lb z z r C c c +

== − +=− +  

Since 2 ( )r C a< with 2 22( )Cr c>  and az z> , the 
assumptions of Proposition 17(iii) are satisfied, thus, the 
lower bounds of ( )Cρ  are ordered as 

2 ( ) ( ) ( )r C a lb z Cρ< ≤ ≤ , verifying the inequalities therein.  
According to Remark 18, the proposed lower bound ( )lb z in 
(51) is sharper than the both Frobenius’ lower bounds in 
Lemma 1, thus 10.6332 ( )Cρ≤ . 
For the upper bound of C , since 3 33( )r C c> , the quantities 

jw ,  1, 2, 4j =  are given by (5a) and these are equal to 

1
7 329

28
w +

= , 2
3 177

28
w − +

= , 4
8
28

w = .  

By (10),  1 1 2 4
7 329max{ , , } 0.8978.

28
w w w w w +
≡ = = =  

Hence, Theorem 9 can be applied and the inequality in (29) 

gives 7 329( ) (22 8) 8 20.5692
28

Cρ +
≤ − + = .  

Thus, the spectral radius is lower and upper bounded: 
10.6332 ( ) 20.5692Cρ≤ ≤                                                                         
Here, notice that the both bounds (lower and upper) of 

( )Cρ are given by the proposed bounds in Theorem 7 and 9, 
respectively.                                                                          □ 
 

III. APPLICATION IN STABILITY OF SISO LINEAR DISCRETE 
TIME SYSTEMS 

Consider the linear invariant discrete-time system with 
the following state space realization [3,13, 17] 

( 1) ( ) ( )x k Ax k Bu k+ = +                                                 (53)          
( ) ( ), for 0,1,2,...y k Cx k k= =  

where ( ) nx k ∈ ,  ( ) pu k ∈ , ( ) ry k ∈ are the state, the 
control input and the measured output vectors, respectively. 
Moreover, ( )nA M∈  , ( )n pB M ×∈  and ( )r nC M ×∈   are 
given constant matrices. Such a system is often closed by 
the control law ( ) ( )u k Ky k= , which yields 

( 1) ( ) ( ), for 0,1,2,..x k A BKC x k k+ = + =                      (54) 

where ( )p rK M ×∈  is the output feedback gain matrix. 
The discrete-time control system in (54) is asymptotically 
stable, i.e. lim ( ) 0

k
x k

→∞
=  for any initial vector (0)x ,  

if and only if  ( ) 1A BKCρ + < . 
The eigenvalue assignment problem is to design an output 
feedback gain matrix ( )p rK M ×∈  providing a closed-loop 
system in a satisfactory stage by shifting controllable 
eigenvalues to desirable locations in the complex plane. In 
particular, the solution of the problem requires the spectral 
radius of the closed-loop matrix A BKC+ to be strictly 
within the unit circle in the complex plane. Various 
approaches have been used to study the aspects of the 
stabilization problem and necessary conditions under which 
the problem can be stabilized have been proposed, but in 
some cases the problem is  NP-hard [10]. The problem of 
the stabilization of the linear discrete-time system of the 
form in (53), where the vectors ( ) nx k ∈ ,  ( ) pu k ∈ and 
the matrices ( )nA M∈  , ( )n pB M ×∈   are nonnegative, has 
attracted the interest of many researches. Here, the discrete-
time control system in (53) is asymptotically stable, if and 
only if ( ) 1Aρ < , [13].  
Thus the bounds of the spectral radius of A  can ensure the 
(asymptotically) stability of the system, which consists of 
the motivation of the following proposition. Using the new 
upper and lower bounds of Theorems 8,9, the results in 
Remarks 8(i), 11(i) and Proposition 4, a criterion is 
formulated, which depends on the quantities , ,z w  

( ), ( ), ,r A r A a aµ λ µµ λλ , in order to ensure the stability of a 
linear discrete-time system. 
 

 Proposition 20. Let ( )nA M∈  be a n onnegative with 
( )r A aµ µµ> , and ( )r Aλ λλα> . Then,  

i)  if 
1

1
( )

a
w

r A a
µµ

µ µµ

−
< <

−
⇒ ( ) 1Aρ < .                            (55) 

ii) if 
1
( )

a
z

r A a
λλ

λ λλ

−
>

−
⇒ ( ) 1ρ >A .                                  (56) 

Proof. i) Since ( )r A aµ µµ> , we can write the following 
equivalence: 

( )
( )

1
1

( )

( ) 1 ( )

( ) 1 ( )

a
w

r A a

w r A a a r A a

w r A a a r A

µµ

µ µµ

µ µµ µµ µ µµ

µ µµ µµ µ

−
< < ⇔

−

− < − < − ⇔

− + < <

 

The validity of (55) follows from the above equivalence and 
(38) in Remark 10.  
ii) Since ( )r A aλ λλ> , we can write  

( ) 1
1 ( ) .

( )
a

z r A a a z
r A a

λλ
λ λλ λλ

λ λλ

−
< − + ⇔ >

−
 

The validity of (56) follows immediately from the above 
equivalence and (27) in Remark 8.                          □ 
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Remark 21. Notice that Proposition 20 provides a criterion 
in order to investigate the property of stability of a discrete-
time control system in (53) except the computation of the 
spectral radius of the nonnegative matrix of the system and 
its compares with the unit. In particular, the system is 
asymptotically stable, when the assumption in (55) satisfies; 
the system is not asymptotically stable, when the assumption 
in (56) satisfies.                                                                       □ 
 
Example 22. Consider the single-input single-output (SISO) 
linear discrete-time system in [5, Example 8] with 

0.5 0 0.6
0.6 0.8 1.2
0.8 1 0.8

A
 
 =  
 
 

    and   
0.5 0 0.6

0.0701 0.2799 0.5
0.2701 0.4799 0.1

B
 
 =  
 
 

 

the associated closed-loop matrix.  
• The spectrum of A is σ(A) =  { 0.4,  0.3542,  2.1458− }, 

which means that ( ) 2.1458Aρ = . 
The row sums of A are 1( ) ( ) 1.1,r A r Aλ ≡ =  and 

2 3( ) ( ) ( ) 2.6r A r A r Aµ ≡ = = .  
According to Remark 6 (iii), the equality 

2 3( ) ( ) 2.6r A r A= =  follows 1w = .  
Since 1 11 ( )r aA > , the quantities iz ,  i = 2,3 are given by 

(4a) and these are equal to 2
1.5 16.65 4.6504

1.2
z +
= = , and 

3
1.3 3.61 2.6667

1.2
z +
= = .  

By (9), 3 2 3min{ , }.≡ =z z z z Obviously, 0.5 / 0.6z > . Since 

1 11( )r A a>  and the assumption in (56) are satisfied, the 
associated linear discrete-time system is not asymptotically 
stable due to Remark 21. 
Here, notice that the new bounds give: 2.1 ( ) 2.6Aρ≤ ≤  and 
the Frobenius’ bounds: 1.1 ( ) 2.6Aρ≤ ≤ . 
Obviously, the new lower bound of the spectral radius of ,A
which is established in Theorem 7 and computed by (18), is 
sharper than the Frobenius’one.   
• The spectrum of B is σ(B) =  {-0.4, 0.3542, 0.9257}, 

which means that ( ) 0.9257Bρ = . 
The row sums of the closed-loop matrix B are 

1( ) ( ) 1.1,r B r Bµ ≡ = and 2 3( ) ( ) ( ) 0.85r B r B r Bλ ≡ = = .   
According to Remark 6 (ii), the equality  

2 3( ) ( ) 0.85r B r B= =  follows 1z = .  
Since 1 11( )B br > , the quantities 2 3, ,iw i =  are given by 
(5a) and these are equal to  

2
0.2799 0.2466 0.6471,

1.2
w +

= =  

and 3
0.0799 0.6546 0.7408.

1.2
w +

= =   

By (10), 2 2 3max{ , }.w w w w≡ = Obviously, 0.5 / 0.6 1.w < <  
Since 11( )r B bµ >  and the assumption in (55) are satisfied, 
the associated linear discrete-time system is asymptotically 
stable due to Remark 21.  

Here, notice that the new bounds give: 
0.85 ( ) 0.9445Bρ≤ ≤ and the Frobenius’ bounds: 
0.85 ( ) 1.1Bρ≤ ≤ . 
Moreover, the new upper bound of the spectral radius of ,B
which is established in Theorem 9 and computed by (29), is 
sharper than the Frobenius’ one. Note that the Frobenius’ 
bounds of ( )Bρ cannot ensure, if the system is stable or not, 
while the new bounds ensure the stability of the system.     □ 
 

IV.  ALGORITHMS AND COMPLEXITY 
In this section the algorithms for computing the upper 

and lower bounds of the spectral radius of a nonnegative 
matrix are summarized and their complexity is analyzed.  
 

The algorithm for computing the lower bound of the 
spectral radius of a nonnegative matrix results from Lemma 
1, Definition 2, Theorem 7 and Remark 8 and is summarized 
in the following. 
 
lower bound algorithm I 
input: nonnegative matrix A  
output: upper bound lb of the spectral radius of A  

step 1. compute 
1

( ) ,1
=

= ≤ ≤∑
n

i ij
j

r A a i n  

step 2. find 
1

( ) min{ ( )}λ ≤ ≤
= ii n

r A r A  

step 3. if ( )λ λλ>r A a   
           then  compute ( )i i ib a a r Aλ λλ= + −  

      
2 4 ( ( ) )

2( ( ) )
λ λ λλ

λ λλ

− + + −
=

−
i i i

i

b b a r A a
z

r A a
 

      1 , λ≤ ≤ ≠i n i  
       find       

1 ,
min { }

λ≤ ≤ ≠
= ii n i

z z  

       compute ( )( )λ λλ λλ= − +lb z r A a a  

else λλ=lb a  
 
 The complexity of the upper bound algorithm is analyzed 
in the following. 
 

Complexity of lower bound algorithm I 
 calculations arithmetic 

operations comparisons 

1 1
( )

=

= ∑
n

i ij
j

r A a  

1≤ ≤i n  

( 1)−n n
 

 

2 ( ) min{ ( ) : 1 }ir A r A i nλ = ≤ ≤   1−n  
3 if ( )λ λλ>r A a   1  

4 

then 

( )i i ib a a r Aλ λλ= + −  
2 4 ( ( ) )

2( ( ) )
λ λ λλ

λ λλ

− + + −
=

−
i i i

i

b b a r A a
z

r A a
 

1 , λ≤ ≤ ≠i n i  

8 5−n   

5 1 ,
min { }

λ≤ ≤ ≠
= ii n i

z z   2−n  

6 ( )( )λ λλ λλ= − +lb z r A a a  2   
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7 else λλ=lb a    
best case complexity 2( ) =T n n  

worst case complexity 
2( ) 9 5= + −T n n n

 
 
Remark 23. i) The quantities ( )λ λλ−r A a , 2( ( ) )λ λλ−r A a  
and 4( ( ) )λ λλ−r A a  required for computing the quantities iz  
are computed once. 
ii) The computation of the quantity  ( )λ λλ−r A a required for 
computing the upper bound lb has been already computed 
in previous calculations. 
iii) Complexity. 
The worst case appears, when ( ) .r A aλ λλ>  Then 
calculations 1, 2, 3, 4, 5, 6 are required. The worst case 
complexity is 2 2( ) 9 5 ( )T n n n n= + − ∈Ο . 

The best case appears when ( )λ λλ>r A a  does not hold. 
Then calculations 1, 2, 3, 7 are required. The best case 
complexity is 2 2( ) ( )T n n n= ∈Θ . 
The complexity holds for 2≥n . The case where 1=n  is 
trivial; the algorithm is not implemented, since =lb A .     
iv) Comment: The lower bound algorithm has two branches. 
The branch else computes the Frobenius’ lower bound and 
the branch then computes a new (sharper) lower bound. It is 
obvious that steps 1 a nd 2 of lower bound algorithm 
compute the Frobenius’ lower bound in time 

2 2( ) 1 ( )T n n n= − ∈ Ο . Hence, the gain of computing a 
sharper lower bound than the Frobenius’ lower bound costs 
computation time ( ) 9 4 ( )T n n n= − ∈Ο , which is derived by 
subtracting the Frobenius’ complexity from the worst case 
complexity.                                                                           □ 
 

The algorithm for computing the upper bound of the 
spectral radius of a nonnegative matrix results from Lemma 
1, Definition 2, Theorem 9 a nd Remark 10 a nd is 
summarized in the following. 
 
upper bound algorithm II 
input: nonnegative matrix A  
output: upper bound ub of the spectral radius of A  

step 1. compute 
1

( ) ,1
=

= ≤ ≤∑
n

i ij
j

r A a i n  

step 2. find 
1

( ) max{ ( )}µ ≤ ≤
= ii n

r A r A  

step 3. if ( )µ µµ>r A a   
           then  compute ( )j j jc a a r Aµ µµ= + −  

      
2 4 ( ( ) )

2( ( ) )
µ µ µµ

µ µµ

− + + −
=

−
j j j

j

c c a r A a
w

r A a
 

      1 , µ≤ ≤ ≠j n j  
       find         

1 ,
max { }

µ≤ ≤ ≠
= jj n j

w w  

       compute ( )( )µ µµ µµ= − +ub w r A a a  

else µµ=ub a  

 The complexity of the upper bound algorithm is analyzed 
in the following. 
 

Complexity of upper bound algorithm II 
 calculations arithmetic 

operations comparisons 

1 1
( )

=

= ∑
n

i ij
j

r A a  

1≤ ≤i n  

( 1)−n n
 

 

2 ( ) max{ ( ) : 1 }ir A r A i nµ = ≤ ≤   1−n  

3 if ( )µ µµ>r A a   1  

4 

then 

( )j j jc a a r Aµ µµ= + −  
2 4 ( ( ) )

2( ( ) )
µ µ µµ

µ µµ

− + + −
=

−
j j j

j

c c a r A a
w

r A a
 

1 , µ≤ ≤ ≠j n j  

8 5−n   

5 1 ,
max { }

µ≤ ≤ ≠
= jj n j

w w   2−n  

6 ( )( )µ µµ µµ= − +ub w r A a a  2   

7 else µµ=ub a    

best case complexity 2( ) =T n n  

worst case complexity 
2( ) 9 5= + −T n n n

 
 

Remark 24. i) The quantities ( )µ µµ−r A a , 2( ( ) )µ µµ−r A a  

and 4( ( ) )µ µµ−r A a  required for computing the quantities 

jw  are computed once. 

ii) The computation of the quantity  ( )µ µµ−r A a  required for 
computing the upper bound ub has been already computed 
in previous calculations. 
iii) Complexity.  
The worst case appears, when ( ) .r A aµ µµ>  Then 
calculations 1, 2, 3, 4, 5, 6 are required. The worst case 
complexity is 2 2( ) 9 5 ( )T n n n n= + − ∈Ο . 
The best case appears when ( )µ µµ>r A a  does not hold. 
Then calculations 1, 2, 3, 7 are required. The best case 
complexity is 2 2( ) ( )T n n n= ∈Θ . 
The complexity holds for 2≥n . The case where 1=n  is 
trivial; the algorithm is not implemented, since =ub A .    
iv) Comment: The upper bound algorithm has two branches. 
The branch else computes the Frobenius’ upper bound and 
the branch then computes a new (sharper) upper bound. It is 
obvious that steps 1 a nd 2 of upper bound algorithm 
compute the Frobenius’ upper bound in time 

2 2( ) 1 ( )T n n n= − ∈Ο . Hence, the gain of computing a 
sharper upper bound than the Frobenius’ upper bound costs 
computation time ( ) 9 4 ( )T n n n= − ∈Ο , which is derived by 
subtracting the Frobenius’ complexity from the worst case 
complexity.                                                                           □ 
 

The algorithm for computing the new lower bound of the 
spectral radius of a nonnegative matrix results from the 
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lower bound algorithm and the Proposition 14 and is 
summarized in the following. 
 
new lower bound algorithm III 
input: nonnegative matrix A  
output: upper bound lb of the spectral radius of A  
step 1. compute ( ),1≤ ≤ir A i n  
step 2. find ( )λr A  
step 3. if ( )λ λλ>r A a   
           then  compute , ,1 , λ≤ ≤ ≠i ib z i n i  

       find       
1 ,

min { }
λ≤ ≤ ≠

= ii n i
z z  

       compute ( )( )λ λλ λλ= − +lb z r A a a  

else λλ=lb a  
        construct submatrix A   
        of dimension m m× , 1 1m n≤ ≤ −  

                       compute ( )ir A ,  1 i m≤ ≤  
                       find ( )r Aλ

  

                       if ( ) ( )r A r Aλλ >


  

                       then  compute , , 1 ,i ib z i m i λ≤ ≤ ≠ 

   
   find 

1 ,
min { }ii m i

z z
λ≤ ≤ ≠

=


   

                                compute ( ( ) )nlb z r A a aλ λλ λλ= − +
  



   
                               =lb nlb  
 
Remark 25. In fact, the new lower bound algorithm 
computes the lower bound using the lower bound algorithm 
for the matrix A  or for the submatrix A , if needed. 
Due to the fact that the dimension of the submatrix A  is less 
than the dimension of the matrix A , both the new lower 
bound algorithm III and the lower bound algorithm I have 
quadratic time worst case complexity 2( )Ο n .                      □ 
 

V. CONCLUSIONS 
In this paper, a new lower bound and a new upper bound 

for the spectral radius of a nοnnegative matrix are proposed. 
The main result of this paper is that the proposed upper and 
lower bounds are always sharper or equal to the well-
established Frobenius’ bounds.  

The conditions under which the new bounds are sharper 
than the Frobenius’ ones are determined. Clarifying 
examples are given in order to highlight the sharpness of the 
proposed bounds in comparison with the Frobenius’  
bounds.  

An application in stability of SISO linear discrete time 
systems is presented and the stability of the systems is 
investigated. 

The algorithms which implement the computation of the 
proposed bounds are presented and analyzed. The proposed 
bounds are computed with complexity 2( )nΟ . This is very 
important especially in the case of large matrix dimension. 
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